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Abstract

Using atomistic simulations of dislocation motion in Ni and Ni-Au alloys we report a detailed

study of the mobility function as a function of stress, temperature and alloy composition. We

analyze the results in terms of analytic models of phonon radiation and their selection rules for

phonon excitation. We find a remarkable agreement between the location of the cusps in the σ-v

relation and the velocity of waves propagating in the direction of dislocation motion. We identify

and characterize three regimes of dissipation whose boundaries are essentially determined by the

direction of motion of the dislocation, rather than by its screw or edge character.
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I. INTRODUCTION

The emergence of fully three dimensional, mesoscopic computational methodologies based

on dislocation theory has given rise to several recent breakthrough observations in crystal

plasticity. Calculations involving dislocation densities of the order of 1012 m−2 and higher

have become accessible by using efficient computational methods such as Dislocation Dynam-

ics (DD)1–3. This has provided many critical insights that are improving our understanding

of strain hardening and single crystal plasticity. Dislocation multiplication giving rise to

cell boundaries, dislocation forests and other collective dislocation arrangements have been

simulated to high degrees of accuracy using DD4–6. At its core, DD is a discretized repre-

sentation of dislocation lines interacting with each other via isotropic linear elasticity. This

means that the rich atomistic details of the dislocation core are neglected in favor of com-

putational efficiency. Nevertheless, given the highly non-linear character of the interatomic

interactions in the core, it is clearly the relative motion of the core atoms that contributes

most to the energetics of dislocation motion7. Therefore, no DD model is complete without

a meaningful incorporation of this atomistic information. In order to understand how this

can be achieved, one only needs to look at the two fundamental equations integrated during

a DD simulation8:

v = M f

f = −∇rEel (r)
(1)

where r, v and f are the position, velocity, and force vectors of the set of discrete nodes

representing the dislocation ensemble. Eel is the total elastic energy and M is a second-order

tensor that maps the local force field at a given node onto nodal velocities. In essence, M

maps the stress tensor of the case at hand onto the velocities for each one of the nodal

degrees of freedom. The computation of the nodal velocities (mobilities) in response to

the driving forces is highly material and condition specific and M is a complex function of

many parameters including stress, temperature, dislocation character and, of course, mate-

rial properties. As mentioned above, dislocation motion is intrinsically a discrete process

governed by the atomic properties and discreteness of the lattice and the dislocation core.

Therefore, determining the mobility law is beyond the capabilities of linear elasticity and

requires more detailed, atomistic-level calculations that take into account the non-linear

character of dislocation motion. Sources of this information are typically experiments, es-
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pecially those performed with atomistic resolution such as HREM, or atomistic simulations.

The fidelity of DD dislocations hinges heavily on these mobilities functions, whose determi-

nation is generally quite computationally exhaustive.

To date, DD simulations have been performed for pure systems in slow deformation

conditions. However, there is an increasing volume of work in high-pressure physics and

materials strength that imply stresses in excess of several GPa and strain rates of the order

of 106 s−1 and higher as well as mixed materials such as LiF and SiO9,10. Under these ex-

treme conditions, it is expected that dislocations will travel at very high velocities, possibly

exceeding the speed of sound. Additionally, processes involving multicomponent systems

have not yet been addressed in DD. By way of example, precipitation hardening, or age

hardening, provides one of the most widely used mechanisms for the strengthening of metal

alloys. In precipitate-strengthened alloys, the stress required to move dislocations apprecia-

ble distances on a slip plane is noticeably higher than in the pure matrix and thus this is the

process controlling the yielding behavior of the solid. Models proposed to explain the yield

strength of precipitate-strengthened materials make use of some structural features that re-

strict dislocation mobility, be it dislocation bowing, cross slip, particle shear, etc. These are

mechanisms that are microscopic in nature and thus atomistic simulation is ideally suited

to study it. Although of high technological importance, only recently have reliable multi-

component interatomic potentials been developed for the study of binary alloys. Potentials

are fitted to a few well-known parameters, such as elastic properties and heats of mixing,

that might not reproduce the thermodynamics satisfactorily.

In this paper, we report molecular dynamics (MD) results of edge and screw dislocation

motion simulations in dilute Ni-Au alloys. In the first part of this work we discuss the con-

tinuum solutions for sub and supersonic dislocations. Subsequently, we choose the working

regime within the phase diagram of the alloy based on short-range order considerations and

we age the working samples to thermodynamic equilibrium. Secondly, on the previously-

obtained samples, a MD study is carried out to detail the dislocation motion behavior and

extract mobility laws under each corresponding regime.
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II. MOVING DISLOCATIONS IN ALLOYS: THE ANALYTIC APPROACH

Dislocations moving in a crystal experience a resisitive force leading to energy dissipation.

These forces originate from the intrinsic properties of the crystal, and give rise to two

possible dissipation mechanisms: damping by scattering of elementary excitations existing

in the lattice and radiation of waves originated by the very dislocation motion. The first

mechanism can be described by a simple viscous law, with the viscosity directly proportional

to the temperature, and is the dominant dissipation mechanism at low velocities. The second

mechanism has a complex velocity dependence, is relevant generally at high velocities and

essentially independent of temperature. Traditionally, two theoretical frameworks have been

employed to study radiative dissipation, namely continuum elasticity and discrete lattice

models within the harmonic approximation. However, their application to real lattices

poses serious challenges when it comes to a proper quantitative interpretation. We shall

focus most of this work on this problem as it still presents the biggest difficulties.

Dissipation of energy by radiation is a puzzling effect. Starting in the late 1940’s with the

continuum approximation, the work of Frank, Leibfried and Dietze introduced the notion of

’relativistic’ motion for speeds comparable to the transverse sound velocity11. In the 50’s,

solutions based on continuum elasticity predicted dissipation-free subsonic and dissipative

supersonic motion, with a divergence at cT , the speed of transverse waves. This divergence

was later characterized for screw and edge dislocations. For example, Hirth and Lothe11 give

the standard treatment of a moving dislocation in an isotropic continuum medium. It is

based on the Lorentz transformations of space and time with the transverse sound velocity

cT as the limit velocity. As in relativity theory, several magnitudes diverge as v approaches

cT , in particular the self-energy of the moving dislocation and hence the stress necessary to

maintain a steady motion. The concept of ’forbidden velocity’ emerges from this context

in which cT appears as the maximum possible velocity. However, supersonic dislocation

velocities are also possible and curious solutions (as for example dissipation-free motion at
√

2cT
12) appear in isotropic continuum elasticity above cT .

For dispersive media, Eshelby13 found the solution for dissipation vs. v at intermedi-

ate velocities. Eshelby’s approximate approach in a dispersive continuum gives dissipative

subsonic motion in some range above the minimum phase velocity and below cT . This is a

regime that MD simulations recently seem to have identified, although no particular relation
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between this minimum velocity and any relevant crystal velocity has been established14. In

general, every additional complexity considered in the different models introduces some new

characteristic velocity that appears to play a role in the mechanism of dissipative radiation.

The main conclusions extracted from c continuum analysis then are:

1. Subsonic motion is dissipation-free if the medium has no dispersion

2. As v approaches cT from below, the singularity of the self-energy in non-dispersive

media goes as:

Ẇ ∝
(

1 −
(

v

cT

)2
)− 1

2

(2)

for screw, and as:

Ẇ ∝
(

1 −
(

v

cT

)2
)− 3

2

(3)

for edge dislocations.

3. When dispersion is introduced but isotropy is maintained a new critical velocity ap-

pears, the slowest phase velocity cmin = ω/k, for k in the direction of dislocation

velocity. At this velocity radiation starts as:

σ ∝ (v/cmin − 1)
3

2 (4)

for screw dislocations. The case of edge character has not been solved.

In the 70’s and 80’s, discrete models of even the simplest cubic lattices introduced more

structure in the dissipation curve. These theoretical calculations of the relation between

stress and velocity for dislocations moving in a discrete lattice were done on the basis of

idealized lattice dynamics models of harmonic crystals. Celli et al.15, Crowley et al.16, and

Ishioka17 developed models for a screw dislocation moving in a simple cubic nearest-neighbor

harmonic lattice with snapping bonds. These results were later expanded by Glass18 to

include isotopic mass defects, and the case of uniform motion was solved by Caro et al.19.

Analyses of the nature of the radiation were given by Debiaggi et al.20,21.

These works consider a perfect crystal at zero temperature under the influence of external

Kanzaki forces as implemented by Boyer et al.22. These forces create the time dependent

topology of a moving screw dislocation. In this way, the external forces act on a perfect
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harmonic lattice whose Green’s function is known analytically and therefore the response, in

particular the energy dissipation, can be easily calculated by using the fluctuation-dissipation

theorem (see Caro et al.19),

Ẇ =

∫

dkdω|F (k, ω)|2ImG(k, ω) (5)

The relation between k and ω in the Kanzaki force F (k, ω), together with the dispersion

relations appearing in the Green’s function G(k, ω) impose selection rules for the excitation

of lattice waves that give the rich behavior of the dissipation function.

Figure 1 shows the σ-v relation for a anisotropic lattice model with cubic symmetry and a

ratio cL/cT = 3, where cL is the longitudinal speed of sound along a 〈100〉 direction19. Many

interesting features appear in the figure. For example, at high velocities (v > 0.4cL) the

motion is well defined in the sense that ∂v/∂σ > 0, similar to continuum theory. A minimum

stress, often called dynamic Peierls stress, appears at the beginning of this regime. Contrary

to continuum theory solutions, the dynamic Peierls stress is non-zero and has to do with the

intrinsic properties and the discreteness of the lattice. At intermediate velocities, there are

regions of instability, ∂v/∂σ < 0, and singularities, the strongest of them corresponding to

a dislocation velocity equal to transverse sound velocity (in this model the two transverse

branches are degenerate along the direction of dislocation motion).

These singularities are the main result of the analytic works we are reviewing here. They

show the existence of many dislocation velocities with related to the phase velocity of partic-

ular phonons in the lattice for which the dissipation displays cusps. This leads to a situation

where the energy radiated by the snapping bonds cannot abandon the core of the moving

dislocation, thus producing divergences in the stress required to keep a steady motion. The

exact nature of these singularities depends, in these models, on the artificial phonon lifetime

chosen for the Green’s function.

Debiaggi et al.20 analyzed the spectrum of these radiated waves, finding a relation between

the polarization and the Burgers vector, and between the glide plane and the direction of

propagation. In particular they found that these waves are exponentially localized on the

glide plane with polarization along the Burgers vector and propagation direction along that

of dislocation motion. These rules, when applied to the fcc lattice of the Ni-Au system under

consideration, would give us the key to locate the cusps in the σ-v relation.

It is interesting to note here that Hirth and Lothe 11 consider that there is neither

6



experimental manifestation nor computer simulations that support the existence of these

resonances. However, we should bear in mind that the sharp resonances in the model

correspond to precise selection rules in a model system that does not couple motions with

different polarizations, i.e. a simple-cubic, nearest-neighbor harmonic model, and where

FIG. 1: Dislocation velocity normalized to longitudinal sound velocity versus applied stress normal-

ized to shear modulus, for a screw dislocation moving in a simple cubic nearest neighbor harmonic

lattice, from19
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dislocations are ideal, radiating fully transverse polarized waves. In real crystals, as well

as in computer simulations, none of these features apply, and what is observed instead of

resonances is a smooth increase in radiation energy as the velocity increases. The source

of this dissipation is likely to be related to both mechanisms found in the simple models

explained above, namely the isotropic dispersive elastic result and the cumulus of resonances

in Figure 1 for the discrete models.

The main difference between discrete and continuum models is that, in the latter, the

sound velocity and the minimum phase velocity are the only two velocities that could play

a role in dissipation, while in a discrete lattice the splitting between sound velocities and

minimum phase velocities is a rich 3D function, as the wave vector points towards different

directions in the the Brillouin zone. With this in mind, we realize that at any velocity above

some absolute minimum, a dislocation is supersonic with respect to some waves and subsonic

with respect to others, giving radiation of phonons at all speeds above such minimum. As a

result, the fine structure of Fig 1 is lost. Finally, the analytic models also predict a rich array

of dynamic effects when impurities in solid solution interact with a moving dislocation21,

which can lead to either hardening or softening of the material depending on the sign of the

mass misfit. This effect on the Peierls stress does not appear when dislocations are treated

in a continuum.

In summary, despite the simplified picture of dislocations and lattices given by these

analytical discrete and continuum models, they have the merit of highlighting the physical

nature of phonons radiated by moving dislocations, showing an unexpectedly rich behavior.

While these models represent the situation at 0K, at finite temperatures an additional

mechanism of dissipation appears, namely phonon drag. This mechanism has been described,

among others, by Leibfried23 and by Brailsford24, and gives a simple viscous damping pro-

portional to the temperature:

A T v = b σ (6)

A relation like Equation 6 has been found experimentally as well as observed numerous

times in computer simulations.
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III. MOVING DISLOCATIONS IN ALLOYS: THE COMPUTATIONAL RE-

SULTS

It is only recently that the problem of dislocation mobility has regained some attention, as

progress in computational materials science requires a proper knowledge of these functions.

In a recent paper, Olmsted et al.14 report atomistic simulations of dislocation mobility in

Al (a fairly isotropic material), Ni (fairly anisotropic), and Al-Mg alloys, and analyze their

results in terms of the forbidden velocities of the continuum models. At low velocities they

find that a linear regime exists where the velocity is proportional to σ/T , as expected from

phonon damping at finite temperature. They note that, in Al, screw dislocations are more

damped than edge dislocations, while in Ni both behave comparably. The mobility of screw

dislocations in the subsonic regime in both materials behaves as a superposition of viscous

damping plus a radiative behavior with the functional form suggested by Eshelby 13, namely:

σ =







ATv v < v0

ATv + D(v − v0)
3

2 v > v0

(7)

But, despite the implications of these formulae, which suggest a crossover between a damping

regime below some velocity v0 and a radiative regime above it, they find that v0 is not

related to any relevant phonon velocity in the material, so they conclude that equations

above have to be considered only as phenomenological. Furthermore, they do not provide

an interpretation as to why edge dislocations do not behave in a similar way.

Other computational works that we do not discuss here address the damping regime

at low velocity 25, high speed collisions with different obstacles 26, or different aspects of

saturation velocities 27,28. In general, from the collective findings of these workers, one does

not get a comprehensive picture relating the structure of the mobility functions to lattice

and dislocation properties.

IV. MODELING DISLOCATIONS IN Au-Ni ALLOYS

A. The Phase Diagram

For this work we have selected the Au-Ni system, described by a set of embedding-atom

(EAM) potentials that are fitted to the heats of solution of the binary alloys29, because
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it has recently been fully characterized thermodynamically 30. The Au-Ni system has a

simple phase diagram but unusual thermodynamic properties. The formation enthalpy is

the result of the cancelation of two important terms: a positive contribution stemming from

the elastic lattice distortion due to different atomic radii (rAu = 1.46 Å, and rNi = 1.24 Å),

that translates into a 14% lattice parameter mismatch (for Ni a0=3.524 Å, for Au a0=4.079

Å), and a negative chemical contribution that results from the difference in the electro-

negativity of the two elements. According to Lu et al.31, alloys with different sign in these

two contributions may show phase separation in the long range at low temperature, and

short range ordering at high T . Additionally, the Ni-Au system has a large positive excess

entropy derived from significant changes in the vibrational frequency spectrum when the

alloy is constituted.

As shown in Ref.30, good overall qualitative agreement with experiments is found about

the main characteristics of the phase diagram. Figure 2 shows both the experimental and the

calculated equilibrium phase diagrams of the Ni-Au alloy used in this work. The potentials

give a narrower miscibility gap compared to the experimental measurements. There are

also some manifestations of short-range order in the solid solution below saturation both

experimentally and as predicted by the potentials. Therefore, Ni-Au makes for an interesting

system to study dislocation mobility since one can explore regimes of ordering or segregation

depending on the solute content.

B. The dispersion relation

To understand the dislocation behavior close to the forbidden velocities we focus now

into the dynamic properties of the model under consideration. As discussed above, the

largest cusp in the σ-v relation, see Fig. 1, appears at a dislocation velocity equal to the

phase velocities of particular waves in the crystal. Phase velocities along each possible

propagation direction and polarization span a range of values from a minimum, usually at

the Brillouin zone edge along high symmetry directions, and a maximum close to the center

of the zone, where phase (ω/k) and group (∂ω/∂k) velocities are equal, the so-called sound

velocities. Critical velocities at which singularities occur are then the slopes close to the Γ

point of those phonon branches in the direction of the dislocation velocity. The red dashed

lines in Figure 3 represent the minimum phase velocity, cmin for each k-direction. According
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FIG. 2: Au-Ni phase diagram as obtained from the EAM potentials 29. The experimental phase

diagram (red lines) is shown for comparison, from 30

to the arguments presented in Section II, the dissipative range of velocities for the 〈110〉
direction of motion, i.e. cmin < v < cT , is considerably narrower than for the 〈112〉 direction.

cmin for each direction are given in Table I.

Relevant wave velocities are those along the direction of dislocation motion, 〈110〉 for

edge and 〈211〉 for screw dislocations. These directions correspond to the Γ-K-X and the

Γ-J-X branches in Figure 3, respectively. The point that we have labeled J is not usually

reported in dispersion relations; it is relevant for the process we are studying here and its

location at the boundary of the first Brillouin zone is sketched in Figure 4. The sound and

minimum phase velocities associated with the potential used in this work are given in Table

I for the two directions of interest.
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FIG. 3: Dispersion relations for pure Ni obtained with the Ni-Au EAM potential used in this work

along the relevant directions dictated by dislocation motion. ξ is given in units of the reciprocal

lattice parameter 4π/a0. The red dashed lines represent the minimum phase velocity, cmin for

each k-direction. The dissipative range of velocities for the 〈110〉 branch, i.e. cmin < v < cT , is

significantly narrower than for the 〈112〉 branch.

V. RESULTS

For our molecular dynamics simulations we use a 80a × 30b × 40c (where a = a0

√
2

2
,

b = a0

√
6

2
and c = a0

√
3) tetragonal sample with its principal axes oriented along x = [110],

y = [112] and z = [111], containing 576000 atoms. Our simulated system is larger that

those customarily used in similar studies, a measure aimed at minimizing finite size effects

and ensuring 3D dislocation behavior. Periodic boundary conditions are used in the x

and y directions, whereas traction surfaces are chosen for the z-boundaries. Perfect screw

or edge dislocations with Burger vector 1

2
[110] are created at the center of the sample by
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TABLE I: Longitudinal, cL, transverse, cT , sound speeds and minimum phase velocities, cmin,

for the two k-paths of interest: Γ-J-X for screw and Γ-K-X for edge dislocation motion. Both k-

paths have non-degenerate transversal branches. The data have been calculated from the phonon

dispersion relation in Figure 3. Velocities are given in m·s−1.

k-branch Γ-K-X Γ-J-X

cL 5637.6 5872.6

cT1
3647.3 3281.7

cT2
2132.0 2578.1

cmin 1927.8 766.6

applying the appropriate linear elasticity solution to the unrelaxed crystallite (screw) or by

removing half planes of atoms (edge). The initial line direction is [112] and [110] for the edge

and screw dislocation respectively. Our geometry implies dislocation densities of the order of

∼ 3×1015 m−2, which can result in shear rates of 107 to 109 s−1. However, results obtained in

carefully carried out simulations have proven to be extrapolable to dislocations moving at the

simulated velocities in materials bearing realistic dislocation densities32. After relaxation,

both dislocations are seen to split into Shockley partials on a (111) plane. Samples are

thermally equilibrated at 100, 300 or 500 K prior to the application of the external shear

stress.

With respect to the alloy systems, more details are given below. Suffice it to say that

all alloys considered were aged with a Monte Carlo code 33 to build up any eventual short

range order.

Shear stress is applied by imparting appropriate atomic forces on top and bottom skin

regions containing one or more (111) planes. Here we probe stresses in the 0 < σ < 4000-

MPa range. Dislocations start moving under the action of the applied stress and, after a

transient, a steady motion develops with the dislocation crossing the sample several times

depending on its speed. Linear regression fits to the dislocation position vs. time evolution

provide the velocity reported in the figures below. The atoms belonging to the core of the

partial dislocations and the stacking fault ribbon were identified using the centro-symmetry

deviation parameter. All simulations were run using the LAMMPS code 34 with 128-256

processors on the THUNDER cluster at LLNL.
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FIG. 4: Brillouin zone showing the k-branches displayed in Fig. 3 and the location of the points,

Γ, K, X and J, which is the exit point of the 〈112〉 branch from the first Brillouin zone. Note that

the periodicity limits of both branches are located at point X, hence both branches come at X with

equal frequency values and zero derivative.

A. Short range order vs. segregation

In choosing the alloy compositions for our study we must ensure that Au remains in solid

solution in Ni at all times at the temperatures of interest. The reasons for this have to do with

the possible existence of short range order, SRO, in the solid solution because of the periodic

boundary conditions along the direction of motion: at every passage of the dislocation

the portion of crystal above the glide plane shifts with respect to the portion below by a

magnitude b; when the dislocation re-enters the box the distribution of solute atoms on the

sheared section of the crystal would changed with respect to the original configuration if

SRO were present. Random solid solutions do not bring about such complication. Not only

this is a technical issue in the simulation setup but, if SRO develops in the solid solution,

passing dislocations would alter this order producing an additional hardening effect, as

discussed by Rodary et al. 25. Therefore, care must be taken in ensuring that we are

working in the solid solution region of the phase diagram derived from the potentials that
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we are using. To characterize this effect we have calculated the SRO parameter for a number

of Au concentrations in Ni. The SRO is a local parameter and can be expressed as:

ηij = Zij − cjZ (8)

where ηij is the SRO parameter of species i with respect to species j, Zij is the number of

neighbors of type j surrounding an atom of type i, cj is the stoichiometric concentration of

species j and Z is the total number of neighbors in the fcc lattice. In other words, the SRO

parameter represents the difference between the local and global compositions. According

to this definition we can contemplate the following scenarios:

ηij



















< 0 tendency to ordering

= 0 random solution

> 0 tendency to segregation

(9)

Here we work in the range of Au concentrations for which η ≈ 0. Figure 5 shows the SRO

parameter as a function of Au concentration at 300K. Clearly, at CAu . 20% the crystal-

averaged SRO exhibits no significant tendency to ordering. In contrast, at CAu > 20%,

the SRO gradually escalates indicating a strong precipitation inclination as we approach the

solubility limit. Hence, in this work, we confine the dislocation mobility study to CAu 6 20%

and we choose Au concentrations of 0, 5, 10 and 20%.

B. Dislocation behavior

We now focus on mobility functions for both dislocation types at the different tem-

peratures and Au concentrations. Unless otherwise noted, simulations were performed at

increasing shear stresses until a failure mode was detected. As we shall see, for a given

system size, this maximum stress, σm, strongly depends on the character of the dislocation,

the simulation temperature and the Au concentration. For pure Ni it is approximately of

the same order of magnitude as lower-bound estimates for the ideal shear strength of Ni

(∼2.4 to 7.1 GPa 35). On the other hand, the threshold stress, σth for dislocation motion

also displays the same dependences as σm. In pure Ni, this threshold stress is related to the

Peierls stress (∼6.1 MPa 36) albeit thermal fluctuations provide a smooth extrapolation to

σth=0 at least in the screw dislocation case.
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FIG. 5: Short-range order parameter for different equilibrated Ni-Au alloys at 300K. Below 20%

Au content, the alloys display just traces of segregation, whereas at CAu = 30% the SROP grows

significantly pointing to a strong precipitation tendency.

Table II contains σm and σth for all cases considered in this work. Interestingly, the

σm range for screw is broader than fore edge dislocations. The only notable exception is

for CAu = 20%, for which screw dislocations do not move linearly beyond roughly 900

MPa. Conversely, σth for edge dislocations is significantly larger than for screw dislocations,

a somewhat puzzling observation since, generally, the Peirls barrier for edge dislocation

motion is assumed to be lower than for screw dislocations.

1. Screw dislocations

First we discuss the screw dislocation mobility along the direction of motion 〈112〉. Fig-

ures 6 and 7 show a family of curves representing screw dislocation velocities as a function

of the applied shear stress at 100K and 300K respectively. The behavior as a function of

the Au concentration is qualitative similar at both temperatures. Two dynamic regimes

can readily be observed in the subsonic region. First, after overcoming the static friction

(see Table II and the discussion in Section II), the dislocations start to move according to

Equation 6 with friction coefficients spanning almost one order of magnitude from approxi-

mately B = 7.8 × 10−6 to 5.88× 10−5 Pa·s/b at 100K as Au content increases. The friction
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TABLE II: Threshold and maximum shear stresses (in MPa) for dislocation motion for all cases

simulated.

Dislocation type screw edge

Au % 0.0 5.0 10.0 20.0 0.0 5.0 10.0 20.0

T 100K

σth 0 80 100 150 125 125 175 190

σm 3000 2600 2100 900 2600 2000 2200 1800

T 300K

σth 0 60 100 125 100 175 175 200

σm 3000 2400 2100 500 2400 2200 2200 1800

coefficients B = AT and A in Equation 7 are given in Table III. Theoretically, assuming

ideal phonon damping in the first linear regime, the magnitude A should be independent

of temperature, a criterion that our simulations generally meet (more details are given in

Section 11 and Figure 11 below).

Secondly, the mobility curves experience a marked transition and level off into a more

damped dynamic regime. This transition takes at a critical velocity, v0, which is directly

correlated with the value for cmin in Figure 3 (given in Table I) and displays a strong

composition dependence. It also should mark the change from phonon drag to radiative

damping as the dominant dissipative mechanism during dislocation motion. In fact, following

Eshelby13 and Olmsted et al.14, we fit our data to the power law σ = D (v − v0)
α, where v0

plays the role in the real crystal of cmin in the simplified continuum analysis (see Equation

4). The values for the critical velocities, v0, and exponents, α and for the proportionality

constant,D, are given in Table III. The curves for 20% Au did not possess sufficient structure

for this kind of numerical analysis and no fits were performed.

Generally, D is seen to increase with temperature and Au content, except an anomalous

data point at 300K and CAu = 10%. The power law exponents range, approximately,

between 0.65 and unity, with a clearly decreasing trend being observed as a function of

CAu and T . Ostensibly, the critical velocities show no temperature dependence, decrease

with Au composition and are about twice the value of cmin along the 〈112〉 direction (see

Table I). In any event, the second regime continues until the velocity saturates at a value
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TABLE III: Friction coefficients, critical velocities and radiative exponents for the screw dislocation

v − σ dependence during the first and second dynamic regimes observed in the mobility functions.

Au % 0.0 5.0 10.0 20.0

T [K] 100

B [×10−5Pa·s/b] 0.78 1.18 2.85 5.88

A [×10−7Pa·s·K−1/b] 0.78 1.18 2.85 5.88

v0 [m·s−1] 1640 1500 1371 –

D [106 Pa·s·m−1] 3.89 13.65 32.13 –

α 0.99 0.78 0.75 –

T [K] 300

B [×10−5Pa·s/b] 2.03 2.76 2.83 6.93

A [×10−7Pa·s·K−1/b] 0.68 0.92 0.94 2.31

v0 [m·s−1] 1639 1498 1385 –

D [106 Pa·s·m−1] 20.93 35.76 22.78 –

α 0.71 0.63 0.70 –

of approximately 2550 m·s−1 for pure Ni at both 100 and 300K. However, at 5% Au this

saturation is only partially identifiable, whereas at 10 and 20% at. Au the crystal becomes

mechanically unstable well before this saturation velocity is reached. For pure Ni, this

velocity coincides with the lower shear wave velocity in the direction of dislocation motion,

cT1
= 2578 m·s−1, also plotted in Figures 6 and 7 for reference. At both temperatures, the

stress required to leap into the transonic regime is approximately 2600 MPa, after which the

continuity of the mobility curve is broken and the dislocation is seen to trespass this first

transonic barrier very abruptly. Thus, this singular behavior represents a third identifiable

dynamic regime, the singular regime.

The interpretation for this behavior can be found by identifying this transonic leap with

the cusps shown in Figure 1. In this instance, the energy dissipated by the slipped atoms

cannot escape the dislocation core and an infinite stress is required in order to keep the

dislocation moving. At still higher stresses the system becomes mechanically unstable, an

effect related to the high strain rate that results from finite size effects.
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FIG. 6: Mobility at 100K for a screw dislocation moving in a Ni crystal with varying Au concen-

tration. Two dynamic regimes can be clearly observed corresponding to two different dissipation

mechanisms. For pure Ni, the dislocation velocity saturates at c〈112〉, after which a marked leap

into the transonic regime is observed.

2. Edge dislocations

We now analyze the dynamic behavior of edge dislocations. In this case, as mentioned

above, the propagation direction is 〈110〉. Figures 8 and 9 show the mobility curves at 100

and 300K respectively. The behavior of the edge dislocations is substantially different to

the screw dislocations. Initially, the edge dislocation velocity grows linearly with stress until

it levels off and saturates for pure Ni at a value of cT2
= 2132 m·s−1, i.e. the maximum

value of the lower shear wave speed along the 〈110〉 direction. Phonon drag is the main

dissipative mechanism up to a critical velocity v0, ver close to cT2
, when the dislocation is

seen to enter the singular regime after displaying, apparently, no radiative behavior. The

critical velocities at which the dislocations transition from the phonon damping regime into

this singular behavior vary with CAu, and are given in Table IV. One can see immediately

that, especially at 300K, the gap between the measured v0’s and cT2
for the 〈110〉 direction
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FIG. 7: Mobility at 300K for a screw dislocation moving in a Ni crystal with varying Au concentra-

tion. Similar to the 100K case, two dynamic regimes can be observed. For pure Ni, the dislocation

velocity saturates at c〈112〉, after which a marked leap into the transonic regime is observed.

(2132 m·s−1) is significantly lower than for the screw dislocation case.

At CAu = 20% the mobility curves lose most of the structure observed at lower Au

contents and the transition from the phonon damping regime to the singular behavior be-

comes difficult to distinguish, albeit the transonic transition can still be appreciated. Table

IV contains the friction coefficients and critical velocities as a function of Au content and

temperature.

The most striking difference with respect to the screw dislocation behavior is that the

transonic stress for edge dislocations is about 1050 MPa for both temperatures simulated

irrespective of the Au concentration. Subsequently, for a range of velocities cT2
< v < cT1

the

dislocation enters the transonic regime, and presumably undergoes radiative damping of the

form given by Eq. 7 followed by a singular behavior close to the upper shear wave velocity

cT1
= 3647 m·s−1. At a stress of about 2.5 GPa (at both 100 and 300K), the dislocation

in pure Ni is seen to break cT1
into another regime. Only the pure system is mechanically

able to withstand such elevated stresses but all the other alloys show the same qualitative
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FIG. 8: Mobility at 100K for an edge dislocation moving in a Ni crystal with varying Au con-

centration. In this case, the dislocation moves in the phonon drag regime until it asymptotically

reaches the lower shear wave velocity. Then it trespasses the transonic limit, seemingly behaving

singularly again until the velocity saturates at the upper shear wave velocity. Only the pure Ni

system is able to withstand the strain rates necessary to leap into the second transonic stage.

behavior, with their velocities saturating just below their effective forbidden velocity, see

Table IV.

At these elevated velocities, v > cT2
, most of the edge dislocations are seen to develop

twinning partials leading to loss of mechanical stability.

VI. DISCUSSION

Figures 6 to 9 clearly suggest that dislocation motion is a complex phenomenon. Indeed,

attempts to understand its intricacies span more than 50 years of research and focus onto

several aspects, such as the Peierls stress, alloy composition, and the sources of dissipation,

phonon drag and radiation. In what follows we analyze each aspect separately.
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TABLE IV: Friction coefficients and critical velocities for the edge dislocation v-σ dependence

observed in the mobility functions.

Au % 0.0 5.0 10.0 20.0

T [K] 100

B [×10−5Pa·s/b] 0.57 2.54 2.70 6.69

A [×10−7Pa·s·K−1/b] 0.57 2.54 2.70 6.69

v0 [m·s−1] 1103 1235 1291 1200

T [K] 300

B [×10−5Pa·s/b] 2.05 3.26 5.07 6.76

A [×10−7Pa·s·K−1/b] 0.68 1.09 1.69 2.25

v0 [m·s−1] 1784 1597 1571 1148

A. Critical velocities

Polarization effects give rise to two possible scenarios, depending on whether the mobility

is governed by the overall behavior of the perfect dislocation or by the individual behaviors

of the Shockley partials into which the perfect dislocation splits. It is worth mentioning

here that the analytic calculation in 19 was done for a case where no partials exist, so this

additional complexity was not treated there.

If the Burgers vectors of the partial dislocations, namely b = 1

6
〈121〉, are the ones that

dictate the mobility behavior, then the radiated waves will be the result of the superposition

of longitudinal and transverse modes for both branches. If, on the contrary, the relevant

Burgers vector is that of the perfect dislocation, b = 1

2
〈110〉, then waves will have pure

longitudinal or pure transversal polarizations for the edge and screw dislocations respectively.

Comparing with the numerical results reported above, one gets the impression that in more

realistic models like molecular dynamics, none of these scenarios apply. For screws, the

perfect Burgers vector is orthogonal to the velocity vector, whereas partials have both normal

and parallel components. Therefore, as observed in Figures 6 and 7, the singularity appears

at the lowest transverse sound speed, and we may conclude that the polarization of the

perfect dislocation is the one that matters. In the case of edge dislocations, the perfect

Burgers vector is longitudinal with respect to the direction of motion, and the partials also
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FIG. 9: Mobility at 300K for an edge dislocation moving in a Ni crystal with varying Au concen-

tration.

have mixed components. However, as shown in Figures 8 and 9, the singularity also appears

at the two transverse sound speeds, so we cannot conclude which polarization is dominant.

Thus the only interpretation that satisfies the whole ensemble of observations is that

both polarizations are relevant, and that all sound speeds, regardless of their polarization,

introduce singularities. In our model displacements are coupled and thus dislocations do

not emmit waves with a well defined polarization. We conclude that our simulations do

not show singularities at longitudinal modes simply because such high velocities were not

reachable in our system due to finite size effects, but we speculate that using larger samples

the entire transonic and supersonic regimes could be mapped and singularities should be

observed also at cL.

With regard to the difference between the sequence drag→radiation→singularity observed

for screws, and drag→singularity observed for edge dislocations, we conclude that the reason

is to be found in the difference between minimum and maximum phase velocity along Γ-J

and Γ-K branches, see Figure 3. The radiation regime appears in a window between cmin

and cT2
; for edge dislocations cmin is very close to cT2

and therefore the radiation regime is

23



overrun by the singularity regime. Instead, in screw dislocations cmin is approximately half

the value of cT2
and there is therefore a wide v-range where this regime is dominant.

Therefore, from the MD simulation results and the simple models discussed above, we

can conclude the following:

• There is a minimum velocity (∼ 0.1cT in Fig 1 and ∼ 0.3cT in our MD simula-

tions), below which radiation is suppressed and only phonon drag is significant. This

minimum velocity is related to cmin, defined in Figure 3.

• Supersonic motion is clearly possible and beyond cT analytic calculations suggest that

the v-σ relation is smooth, although this regime cannot be reached in our MD simu-

lations due to finite size effects that lead to mechanical failure of the computational

cell. Moreover, we have demonstrated that dislocations can be accelerated beyond

transonic barriers, in disagreement with some works published in the literature27,37.

• Screw and edge dislocations behave differently. While edge dislocations go from a

regime of viscous damping (phonon drag) to a regime dominated by singularities,

screws show an additional intermediate regime of radiative dissipation. We speculate

that this regime is the equivalent in real crystals to the multi-singularity regime ob-

served below cT in the simple discrete analytical model discussed in Section II (see

Figure 1) and in the continuum model of Eshelby 13 with a single singularity at cT .

Figures 6 and 7 strongly suggest such relationship, although it has to be noted that

the exponent is different. We capture the complex behavior of the superposition of

several weak singularities into a functional form similar to the case of a single singu-

larity, but where the exponent and the velocity cmin are not related in a simple way

to the dispersion relation of the material. We interpret the difference between screw

and edge in terms of the small window of possible velocities up to cT2
in the direction

of motion of the edge dislocations. The singularity at cT2
hides, we believe, the inter-

mediate regime. With this interpretation a single mobility law can be formulated for

both dislocation types.

• There is an unequivocal relation between the singularities and the velocity of transverse

polarized waves traveling in the direction of the dislocation motion, as determined from

the phonon dispersion relations. However, there is no direct connection between the
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direction of the Burgers vector of either the partials or the perfect dislocations and

the branches in the dispersion relations as it happens in the idealized harmonic model

19.

• For edge dislocations there is a peculiar v-σ pair, namely v = cT1
≃ 2100 m·s−1 and

σ ≃ 1100 MPa where all curves meet, regardless of temperature and composition,

i. e. all alloys at all temperatures studied cross the first singularity at the same

stress level. The reason for the existence of this point remains unclear, as from the

analytic approach, the strength of the singularity depends on the phonon life time, i.

e. anharmonicities of the lattice, and by changing composition and temperature, this

property certainly changes. We believe this feature may be related to size effects.

B. Temperature dependence

For the temperature analysis, we confine the discussion to the results in pure Ni to

separate this from composition effects that will be discussed below. Phonon drag, relevant

at low dislocation speeds and moderate to high T has been successfully characterized by

several workers23,24 and its effect is well captured by a viscous term that depends linearly

on T , B = AT . As discussed earlier, here A is the temperature-independent viscosity and

should remain constant in the dynamic regime where phonon drag is dominant. We have

performed additional simulations to further substantiate this and the results are shown in

Figure 10. The figure shows the mobility of screw dislocations in pure Ni at three different

temperatures, namely 100 and 300K, already discussed in Section VB1, and also 500K. The

data for A at 100 and 300K was already presented in Table III, 7.82× 10−8 and 6.77× 10−8

Pa·s·K−1 per unit Burgers vector respectively, and to this we add a value of A = 6.624×10−8

at 500K in the same units. Therefore, our simulations capture the dynamic behavior of the

phonon drag regime quite accurately and are in excellent agreement with the data obtained

by Olmsted et al.14 for screw dislocation simulations in Ni using MD.

Another striking feature in Figure 10 is that, after the initial viscous regime, the dynami-

cal behavior of the screw dislocations becomes temperature independent. The transition into

the radiative regime scales almost linearly with temperature (σ/T ∼ 0.3 for all three tem-

peratures) but, once established, this radiative dissipation is characterized by a law of the

type σ ∝ vα, with α being close to unity. More details are given in Section VID concerning
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FIG. 10: Dislocation mobility in pure Ni as a function of temperature. For screw dislocations, the

figure showcases the three dynamic regimes studied in this work: phonon drag, radiative dissipation

and singular regimes. For edge dislocations, the radiative region is suppressed on account of the

narrow gap between v0 and cT1
for the direction of motion (see text). The data at 100 and 300K

were already presented in Figures 6 and 7 for screws and 8 and 9 for edge dislocations.

the functional form of the σ vs v dependence in this regime..

Similarly, as the dislocation approaches the lower shear wave speed, the three cases display

the same qualitative behavior. At 500K the σ-v curve loses some resolution due to thermal

noise, although the transonic stress is the same as for 100 and 300K and equal to 2700 MPa.

With regard to edge dislocations, similar conclusions can be extracted. The values for

A at 100 and 300K for pure Ni are given in Table IV and are 0.57 × 10−7 and 0.68 × 10−7

Pa·s·K−1 per unit Burgers vector respectively, again in good agreement with Olmsted et al..

Evidently, two data points are not enough to derive a conclusive trend but the respective

values are within a tolerable margin and seem to validate the expected dynamic behavior in

the phonon drag regime.

In stark contrast with screw dislocations, here the mobility curve transitions into a

temperature-independent, singular behavior leaving no indication of the development of

a radiative regime. As mentioned in Section VIA we conclude that this is caused by the
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narrow range of available wave velocities between the minimum phase velocity and the sound

velocity along the 〈110〉 direction (see Figure 3) when compared to the 〈112〉 direction, perti-

nent to screw dislocations. In other words, (cT − cmin)edge ≪ (cT − cmin)screw. As pointed

out in Section VB2 and shown in Figure 10, the first transonic stress is around 1000 MPa

and is also temperature (and composition) independent. The subsequent singular behav-

ior, in the transonic regime, also bears no temperature dependence, nor does the second

transonic stress (at about 2400 MPa).

In conclusion, in pure Ni, temperature is only a factor to consider when dislocations

operate within the phonon drag regime at low velocities. The dependece follows Equation

6 very accurately and the corresponding viscosities are given in Tables III and IV. In the

other two regimes, both types of dislocations exhibit a temperature-independent behavior.

C. Composition dependence

The alloying effects manifest themselves mainly through two features, namely the thresh-

old stresses and the viscous damping coefficients. The threshold stresses, σth, are given in

Table II for all cases simulated in this work. Several theories have been proposed over the

last decades to explain the origin of σth. These theories have mostly been formulated on the

basis of direct dislocation-solute interactions (see Ref.38 and references therein) or solute-

solute associations induced by dislocation glide25,39. Other non-elastic mechanisms such as

electrostatic locking40 have also been proposed, but they will not be considered here as are

not captured by our potentials.

Contrary to the Ni-Al system studied by Rodary et al.25, where there is a strong tendency

to ordering and therefore, in principle, Al-Al pairs repel, Au in dilute solution in Ni exhibits

a weak inclination to segregation (see Figure 5). This means that the mechanism responsible

for chemical hardening cannot be explained in terms of an increase of repulsive solute dimers

across the glide plane. In our case, solute hardening appears as a consequence of elastic

interactions between dilatational inclusions (the Au atoms) and the volumetric stress field

of the dislocation. The interaction is thus “dielastic” in the sense of Kröner, i.e. it is induced

by the dislocation41. Another factor to take into account is that, although a perfect screw

dislocation possesses no volumetric stress component, its intrinsic dissociation into a pair of

Shockley partials in fcc materials projects the total Burgers vector into an edge and a screw
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component. Nevertheless, the edge component of the partials resulting from a perfect screw

is only 1/
√

3 ∼ 0.57 times that of a perfect edge. At this point we make two interesting

considerations. First, since it is only the edge component that interacts elastically with

the solute atoms, one would expect σth to be some function of the edge component of the

Burgers vector. Secondly, the intrinsic lattice barrier to dislocation motion in a material (the

so-called Peierls barrier in a pure system) is known to scale linearly with b. As anticipated in

Section VB, the threshold stress in dilute alloys is directly related to this intrinsic barrier in

the pure material. Therefore, following this line of reasoning, the threshold stress for screws

should be approximately 0.57 times that for edge dislocations. Notably, the ratios taken

from Table II at 100K are in very good agreement with this estimate: σthscrew/σthedge
=

0.64, 0.57 and 0.78 for 5, 10 and 20% Au respectively.

With regard to the friction coefficients given in Tables III and IV, there are several impor-

tant observations. First, the presence of solute atoms introduces an additional temperature

dependence for A in the phonon drag regime. Figure 11 shows the four coefficients of

the phonon drag regime versus composition. We see that the T dependence of A with Au

content is well described by an expression such as: A(T, x) = A∗ + xβ(T ), where A∗ is the

temperature independent value of A(T, 0), x is the Au content and β(T ) is the slope of the

curves shown in Figure 11. Then, at low velocities, our results agree well with those of

standard hardening models42 in that phonon drag coefficient is proportional to the solute

concentration. Secondly, for screw dislocations (Figures 6 and 7), during the radiative and

singular regimes there is no appreciable composition dependence, the curves run qualita-

tively in a similar fashion scaled by an attenuation factor inherited from the phonon drag

regime. A similar argument can be made for the singular regimes observed during edge and

screw dislocation motion.

Hence, we conclude that the origin of the static threshold stress calculated in our simula-

tions lies in the local elastic interaction between the dislocations and the solute Au atoms,

and its strength is dictated by the edge character of the partial dislocations. On the other

hand, the system’s chemical composition does not overly affect the temperature-independent

behavior at low velocities. At a fixed temperature, a proportionality is found between A

and the Au content. No dislocation-specific behavior is observed.
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FIG. 11: Temperature-independent friction coefficient A for screw and edge dislocations as a

function of composition. Generally, equal temperatures correlate together except most notably at

5% Au at 100K. The lines connecting the datapoints are just a guide to the eye.

D. Mobility functions

To summarize our observations, we present here the general form of the mobility law,

taking into consideration all three regimes observed in our simulations and the theoretical

framework used to interpret them. As we have seen, there are three types of contributions

to the dynamic dissipation:

• A phonon drag term that holds at all velocities, characterized by a viscosity that

depends linearly on all three magnitudes explored, namely temperature, the magnitude

of Burgers vector and, to first order, Au content.

• A radiative term that holds only at velocities above the minimum critical velocity cmin

related to the minimum phase velocity along the direction of motion of the dislocation.

This term is expressed by a power of the difference between the dislocation velocity

and the minimum phase velocity, with an exponent in the range 1

2
to 1 that displays

little or no dependence on composition.

• Several (up to three) singular terms at the maximum phase velocities, i. e. the sound

velocities cT1
, cT2

and cL, which do depend, albeit weakly, on the alloy composition.
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Every singularity holds up to a maximum stress, at which the v − σ curve presents a

discontinuity. The critical exponents depend on dislocation type, and are also in the

range 1

2
to 3

2
. Our results do not provide enough information to relate these stress

values to any of the parameters explored. Moreover, while intuitively these values

should be related to anharmonicities, the effects of solutes is not apparent.

The combination of these terms gives the following functional form for the mobility law::

σ = (A∗ + xβ(T ))Tbv + D (v − v0)
α θ(v − v0) +

+
∑

Ci(x) (cTi
− v)−βi θ(cTi

− v) (10)
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FIG. 12: Schematic plot of the three dynamic regimes observed in our simulations. Each regime

corresponds to a term in Equation 10. The enveloping black curve is the range observed in this

work.

A schematic representation of this function is given in Figure 12. Finally, for every

material and every direction of motion, the dispersion relations give the values for minimum

and singular velocities.
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VII. CONCLUSIONS

We have studied the relation between applied stress and dislocation velocity in a model

alloy using computer simulations. The obtained mobility curves display a rich structure, ex-

pressed in the form of an intricate functional form, which we interpret resorting to continuum

and discrete models of dislocation dynamics.

We prove that dislocation motion is a superposition of three different dynamic regimes

punctuated by critical velocities. We have established relations between the phonon spec-

trum of the lattice and the structure of the mobility function. These relations remove

long-standing uncertainties found in the literature concerning the interpretation of these

critical velocities, as we show that they are clearly related to the phase velocities of phonons

propagating in the direction of dislocation motion.

Our main conclusion, thus, is that our MD simulations satisfy the velocity selection

rules derived from the continuum and discrete lattice dynamics analysis. Our simulations

confirm the validity of the phonon damping mechanism as being linear with temperature

and independent of dislocation character. Additionally, our data suggest that the threshold

stress for dislocation motion depends linearly with the alloy composition, resulting from

elastic interactions among solute atoms and the hydrostatic component of the stress field of

the moving dislocation.

Finally, we are led to conclude that, seemingly, the direction of motion is the overarching

parameter governing dislocation dynamics, rather than its character. In our model system

and in the stress and temperature ranges explored, we find no indication that dislocation

character plays any significant role in the dynamic properties of the moving dislocations.

Nevertheless, one needs to bear in mind that our data have been obtained under very

specific conditions. To name but a few: the crystal structure considered is fcc and, hence,

our conclusions are circumscribed to this type of materials; the stress state is simple shear

so that there are only glide forces acting upon the dislocations. These are not necessarily

limitations but simply final cautionary remarks to put our conclusions into perspective.

More simulations broadening the parametric space explored here are needed in order to

consolidate our observations.
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